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Multiple Sensor System

Sensor System: S1; S2; : : : ; SM

Sensor: Si
Y (i) 2 <: output of Si for input X 2 <:
generated according to probability distribution Pi(Y
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Sensor Fusion Problem

M

Sensor Distributions: Pi(:) could be
(i) known and in computationally conducive form
(ii) known but not in conducive form
(iii) unknown

Fusion Rule:
Given sensor outputs (y(1); y(2); : : : ; y(M))
Compute input x

Fusion Function: Special case: f : <M 7! <
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Examples

Sensor could be hardware device, software module, or combination

Example 1: Mobile Robot Navigation
S1; S2; : : : ; SN : Array of ultrasonic and infrared sensors
Objective: Detect doors few inches wider/narrower than the robot
Sensor: Essentially hardware

Example 2: Function Estimation
Si: Function estimator with unknown noise distribution
Objective: Combine predictors for more accurate prediction
Sensor: Entirely software

Example 3: Human DNA Analysis
Si: Neural network/genetic algorithm to locate protein coding regions
Objective: Combine the modules to improve performance
Sensor: Entirely software

Example 4: Face Recognition
Si: Camera, detection software, neural network recognizer for a class
Objective: Fast detection for a database of facial images
Sensor: Combination of hardware and software
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Detection of Door

mobile
platform

infrared

 ultrasonic

TRC Labmate Mobile Robot

Array of ultrasonic/infrared sensors:

Why these sensors ?
Low cost, Low data content

Di�culties:

(i) Ultrasonic sensors are unreliable:
indicate objects when there are none;
give reasonable readings when directly facing at objects

(ii) Infrared sensors:
Boolean detection in a direction;
occasional malfunctioning

Learning to Detect Door:
Using trials and providing yes/no information when a door is detected
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Detection of Door

Ultrasonic Sensors:
Y (1); Y (2); Y (3); Y (4): normalized distance measurements

Infrared Sensors:
Y (5); Y (6); Y (7); Y (8): Boolean detection

Taining Data: 6 positive examples and 12 negative examples

Robot successfully detected passable doors
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Practical Engineering Systems

Distributions:
(i) Very rarely known { often only a sample is given
(ii) Even when known not in computationally conducive form
(iii) Very hard to estimate - expertise in multiple areas needed

Sample: Typically small
{ Asymptotic statsitical results do not o�er much performance gurantees

Computation: Computation of fuser must be e�cient
{ Preferably low polynomial-time
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Fusion Rule Estimation Problem

Expected error of fusion function f

I(f) =
Z
�[X; f(Y )]dP

[1;M ]
Y jX dPX ;

where
P

[i;j]
Y jX is the joint distribution of Si; : : : Sj, and

� : <2 7! < is the cost function.

Best Fusion Function:
Let f � minimize I(f) over a family of functions F .

Performance Parameters:
We compute a fusion rule f̂ :

� Near-Optimality: I(f̂) must be close to I(f �)

� Computational Complexity: f̂ must be computable fast

Known Probabilities Case:

� If all distributions are known, f � can be \solved" by optimization

� Computational problem is NP-hard even for simple systems
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Fusion Rule Estimation

In our formulation:

� underlying probability distributions are unknown

� Only empirical data is known iid (X1; Y1); (X2; Y2); : : : ; (Xl; Yl)

Result:
Only an approximation f̂ to f � is possible

PAC Criteria: Under Feasibility Conditions:
For su�ciently large sample,

P [I(f̂)� I(f �) > �] < �

Note:

1. This is best type of guarantee possible under a �nite sample

2. Such guarantees are not always possible if F is not �nite
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Classi�cation/Detection problem

Special Case: Each Si is a target detector or classi�er:
X 2 f0; 1g, Y (i) 2 f0; 1g, and

IS(Si) =
Z
[X � Y (i)]dPY (i);X

corresponds to the probability of misclassi�cation of Si

Finite Sample Implications: Devroye (1982)
For any classi�er C, any �nite sample size l, there is a distribution such that:
(i) error of the Bayes classi�er is 0;
(i) probability of misclassi�cation of C � 1=2� �,

for arbitrarily small � > 0.

Why fuse classi�ers ?
Si could be kernel rule, histogram, neural network, support vextor machine,
boosted classier, or tree classi�er
| there is no single best classi�er for �nite sample
| \fuser" can provide better �nite sample guarantees,
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Some Distributions are Known

In our formulation:

� Some underlying probability distributions are unknown
Let P1(:); P2(:); : : : ; PN(:), N �M be unknown

� Only empirical data is known (X1; Y1); (X2; Y2); : : : ; (Xn; Yn)

Result:
Only an approximation f̂ to f � is possible

Decomposition:
Rede�ne cost function so that

I(f) =
Z
C[X; f(Y ))]dP

[1;N ]
Y jX dPX ;

and
C[X; f(Y )] =

Z
�[X; f(Y )]dP

[N+1;M ]
Y jX

PAC Criteria: Under Feasibility Conditions:
For su�ciently large example,

P [I(f̂)� I(f �) > �] < �

FUSER
x

f( , , ... , y y y(1) (2)
)

(M)

S

M
S

N+1

S1

NS

Decomposition  of  Sensor Set

distributions  unknown

distributions  known
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General Solution: Empirical Estimation

Expected square error: �[X; f(Y )] = [X � f(Y )]2

Vapnik's Method: Minimize empirical risk

Iemp(f) =
1

l

lX
i=1

[Xi � f(Yi)]
2

Consider:
I(f �) = min

f2F
fI(f)g

Iemp(f̂) = min
f2F

fIemp(f)g

PAC Criteria: Under Feasibility Conditions:
For su�ciently large example, with probability 1� � we have

I(f̂) � I(f �) + �

or equivalently
P [I(f̂)� I(f �) > �] < �
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Necessary and Su�cient Conditions
In�nite Hypothesis Space

Given l examples;
scale-sensitive dimension of F is d at precision �=4:

Bounded Loss:
sup
x;y

(x� f(y))2 � 1

Performance Condition: Given a sample of size

5040

�2
max

(
d ln2

50d

�
; ln

48

�

)

where d = P�=4-dim (F), we have
P [I(f̂)� I(f �) > �] < �:

Example:
f(y) = f�(y): Feedforward neural network with connection weight vector �.

Note:
1. Necessary condition was an open problem until now.
2. Made possible from a result from computational learning theory.
3. All previous results are su�ciency conditions, e. g. Vapnik's capacity,
Pollard's dimension, metric entropy.
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Feasibility Conditions - Part A

For family fAg2�, A � A, and
for a �nite set fa1; a2; : : : ; ang � A

�A
fAg(fa1; a2; : : : ; ang) = ffa1; a2; : : : ; ang \Ag2�
�fAg(n) = max

a1;a2;:::;an
j�fAg(fa1; a2; : : : ; ang)j

Critical Identity:

�fAg(n) =

8<
:
2n if n � h

< 1:5n
h

h! if n > h

Vapnik-Chervonenkis Dimension of fAg:

Largest size h of a set fa1; a2; : : : ; ang � A that can be subdivided in all
possible ways into two classes by means of sets A.
Formally,

V C � dim(fAg) = max
n
f�fa1;a2;:::;ang(n) = 2ng
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Examples

Example 1:
A: Set of intervals of real line
V C � dim(A) = 2

(b) no interval can precisely include  the two end points

(a)  entire set is shattered

Example 2:
A: Set of all convex polygons with vertices on unit circle
V C � dim(A) =1

Can  create a polygon to include

         any set of points

Example 3:
A: Decision regions of single hidden-layer feedforward networks with thresh-
old units with w weights
V C � dim(A) = O(w logw)
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Capacity of ff�(x)g�2�:
Capacity is largest VC-dim of indicator functions

f�[f�(x) + �]g�2�
for � 2 <, where

�(z) =

8<
: 1 if z � 0
0 f z < 0
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Examples

Example 1:

f(y; �) =
dP
i=1

�iyi + �o

where y = (y1; y2; : : : ; yd) 2 <d and � = �1; �2; : : : ; �d) 2 <d
Capacity of ff(y; �)g�2<d is d+ 1

No hyperplane contains

precisely the two middle points

Example 2:
f(y; �): Sigmoidal feedforward neural network
Capacity of ff(y; �)g�2<d is �nite
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Feasibility Conditions: In�nite Hypothesis Space

Given n examples;
Capacity of F is h:

Bounded Loss:
sup
x;y

(x� f(y))2 � �

Performance Condition:

P [I(f̂)� I(f �) � �] � �

where
� = 2��

and

� = 9
(2n)h

h!
e��

2n=4

Example:
f(y) = f�(y): Feedforward neural network with connection weight vector �.
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Scale-Sensitive Dimension

Given:
F : class of [0; 1]-valued functions on D

P�-shattering:
�: a positive real number
F P�-shatters a set A � D if there exists a function s : A 7! [0; 1] such that
for every E � A there exists some fE 2 F satisfying: for every x 2 A � E,
fE(x) � s(x)� �, and for every x 2 E, fE(x) � s(x) + �.

P�-dimension of F : P�-dim (F):
maximal cardinality of a set A � D that is P�-shattered by F .

x
2

x 1 x
3

s(x  )

s(x  )

s(x  )
1

3

2

Important Identity: F : class of [0; 1]-valued functions
P�-dim (F) � 2d 1

2�eCapacity(F)

Note: Weakest characterization for the existence of �nite sample results
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Outline of Proof:

Step 1:
From Vapnik we have

P
�
I(f̂)� I(f �) > �

�
< P

8<
:sup
g2G

jIemp(f)� I(f)j > �=2

9=
; ;

where G = f(x� f(y))2 : f 2 Fg.

Step 2:
Let G2n = fg(X1; Y1); g(X2; Y2); : : : ; g(X2n; Y2n)jg 2 Gg � [0; 1]2n, based on
an iid sample of size 2n.
From Alon et al , we have.

P

8<
:sup
g2G

jIemp(f)� I(f)j > �=2

9=
; � 24nEX2n[N(�=12; d2n1 ;G2n)]e

��2n=144

� 48n
 
4608n

�2

!d log2(96en=(d�))
e��

2n=144

where d = P�=4-dim (F).

Step 3:
By equating the right hand side to �, we obtain our sample size estimate.
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Summary of Empirical Risk Minimization

Generalizations:

1. Quadratic cost can be generalized, e. g. Lipschitz

2. Boundedness condition can be replaced by relative boundedness

3. Structural risk minimization method

Computational Issues:

1. No systematic computational method exists to obtain f̂

2. The problem is NP-hard for simple cases of F , e.g. feedforward neural
networks with Heaviside units (loading problem).

3. Linearly-separable systems: non-trivial example where f̂ can be com-
puted in polynomial-time using quadratic programming.

Need:

� Computationally e�cient methods with �nite sample guarantees
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Fusion Methods Studied:

{ Basic methods are known
{ We developed: Finite sample results

E�cient computational algorithms

(i) Sigmoidal neural networks with bounded weights

{ | Derived �nite sample results

{ | Computational problem is hard

(ii) Vector space methods

{ | Potential functions

{ | Kurkova's sigmoidal networks

{ | Linear combinations

(iii) Nadaraya-Watson estimator

{ | Derived �nite sample results

{ | Adapted to Haar wavelets - fast computation

{ | Most e�ective in almost all applications

(iv) Adapted nearest neighbor rules

{ | Adapted to Haar wavelets - fast computation

{ | Derived �nite sample results

There is no single \Best Method"
{ For �nite samples situation is very similar to classi�cation
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Sigmoid Feedfoward Networks

� : < 7! [�1;+1] called the activation function

input r 2 [�B;B]d, bj 2 <d, tj 2 <.

fw(r) =
lX

j=1

aj�(b
T
j r + tj)

where w = (w1; w2; : : : ; wl(d+2)) consists
of a1, a2, : : :, al, b11; b12; : : : ; b1d; : : :, bl1; : : : bld, and t1; t2; : : : ; tl.

Sigmoid feedforward networks with bounded weights:
for 0 <  <1,

F
W = ffw : w 2 [�W;W ]l(d+2); �(z) = 1=(1 + e�z); 0 < W <1g

where  is called the gain parameter.
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Sigmoid Feedfoward Networks - Sample Sizes

Performance Condition:

P
�
I(f̂w)� I(f �w) > �

�
< �:

Let GW = f(x� fw(y))
2 : fw 2 FWg and R = 8(A+ lW )2.

Sample size I

16R

�2

0
B@ln(18=�) + 2 ln(8R=�2) + ln(22W 2lR=�) +

W 2lR

�

2
64
0
@W 2lR

�
� 1

1
AN�1 + 1

3
75
1
CA

Sample size II

16R

�2
�
ln(18=�) + 2 ln(8R=�2) + l(N + 2) ln(LwR=�)]

�

where Lw = max(1;WB2=4;W2=4), or for  = 1

Sample size III

128R

�2
max

8<
:ln

 
8

�

!
; [l(2N + 3) + 1] ln

0
@16e(l + 1)R

�

1
A
9=
;

for � > 0, 0 < � < 1.
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Vector Space Methods

Function class F forms a �nite-dimensional vector space

Motivation:
1. Sample complexity is simple function of the dimensionality

2. Computational problem is polynomial-time computable

3. Number of well-known examples belong to this class
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Examples

1. Potential Function Methods: Aizerman et al

Basis of vector space ff1; f2; : : : ; fdg
fi(y) is of the form exp((y � �)2=�)

2. Special Feedforward Sigmoidal Networks:
Proposed by Kurkova based on Kolmogorov's superposition theorem:
Network is of the form

dX
k=1

ai�i(y)

where �i(:)'s are universal consists of sigmoidal networks.

3. Polynomials:
Fixed degree l polynomials form (l + 1)-dimensional vector space
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Dimensionality and Covering Number

Covering Number: N(�; dn; S): smallest number of closed balls of radius �
whose union covers S under pseudo metric dn.

Previous Result: F is d-dimensional vector space
VC-dim of the sets of the form ffx : f(x) � 0g : f 2 Fg is upper bounded
by d

Result of Haussler (1992):
For any probability measure P we have

N(�; dP ;F) � 2
 
2e

�
ln
2e

�

!d
:

dP (f1; f2) =
Z
y2<N jf1(y)� f2(y)jdP
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Sample Size

f �: fusion rule minimizes expected error
f̂ : empirical best fusion rule
F : vector space of dimension d and range [0; 1].

Main Result:
Given an iid sample of size

512

�2

"
d ln

 
64e

�
+ ln

64e

�

!
+ ln(8=�)

#
;

we have
P [I(f̂)� I(f �) > �] < �
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Outline of Proof

Step 1: Vapnik (1982)

P
�
I(f̂)� I(f �) > �

�
� P

8<
:sup
g2G

jPng � Pgj > �=2

9=
; ;

where G = fg(x; y) = (x� f(y))2 : f 2 Fg,
Pg =

R
g(x; y)dP and Png =

1
n

nP
i=1

g(Xi; Yi).

Step 2: For g1; g2 2 G such that gi(x; y) = (x� fi(y))
2, i = 1; 2, we have

jg1(x; y)� g2(x; y)j � j[2x� f1(y)� f2(y)][f1(y)� f2(y)]j � 2jf1(y)� f2(y)j

Step 3: Haussler (1992)

N(�; dn;G) � N(�=2; dn;F) � 2
 
4e

�
ln
4e

�

!d
:

Step 4: Pollard (1984); Lugosi and Zeger (1995)

P
�
I(f̂)� I(f �) > �

�
� 8

 
64e

�
ln
64e

�

!d
e��

2n=512:

Step 4: Right hand side is upperbounded by � for the given sample size n
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Computational Problem

ff1; f2; : : : ; fdg: basis of F
f 2 F can be written as f(y) =

dP
i=1

aifi(y) for ai 2 <.

Empirical Cost:

Consider f̂ =
dP
i=1

âifi(y) such that â = (â1; â2; : : : ; âd) minimizes

Iemp(~a) =
1

n

nX
k=1

0
@Xk �

dX
i=1

aifi(Yk)

1
A2

;

where ~a = (a1; a2; : : : ; ad).

Quadratic Programming Problem:
Now Iemp(~a) can be written in the following form:

Iemp(~a) =
1

n

X
k=1

X2
k +

dX
i=1

dX
j=1

aicijaj +
dX
i=1

aidi

where

cij =
1

n

X
k=1

fi(Yk)fj(Yk)

di =
�2
n

nX
k=1

fi(Yk)Xk:
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Computational Problem

Quadratic Programming Problem:
â = (â1; â2; : : : ; âd) minimizes quadratic form

aTCa+ aTd

C = [cij] is a positive de�nite symmetric and D = [di].

Result:
This problem is polynomial-time solvable using quadratic programmingmeth-
ods
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Haar System

For m = 0; 1; : : :, Qm:
diadic cubes [0; 1]N =

S
J2Qm

J , J \ J 0 = ; for J 6= J 0

jJ j: N -dimensional volume of J= 2�dN .

De�ne Pm : L1(Q) 7! L1(Q) by

Pmf(x) =
1

jJ j
Z
J
f(y)dy

for x 2 J and J 2 Qm.

Critical Property:
The condition

!(f ; r) = O(r�) as r! 0+

implies
k f � Pmf k1= C=2�m as m!1

for some C > 0.
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Haar Kernel and Estimator

Haar kernel:
Pm(x; y) = 2dm

P
J2Qm

1J(x)1J(y) for x; y 2 Q.

Density estimator (Ciesielski 1988):

~pm;n =
1

n

nX
j=1

Pm(x;Xj) =
X

J2Qm

n(J)hJ(x)

with n(J) = 1
n
jfj : Xj 2 Jgj and hJ(x) = 1

jJ j1J(x):
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Nadaraya-Watson Estimator

Function estimator is

f̂m;n(y) =

nP
j=1

XjPm(y; Yj)

nP
j=1

Pm(y; Yj)
=

P
Yj2J

Xj

P
Yj2J

1J(Yj)

Note:

1. Nadaraya-Watson estimator specialized to Haar kernels.

2. Employed by Engel (1994) for �xed-design regression.

3. General Nadaraya-Watson estimator is well-known in statistics.

34



Nadaraya-Watson - Sample Size

Conditions on Functions:
1. Set of functions F � C([0; 1]N) with range [0; 1]
2. !1(f ; r) � kr for some 0 < k <1.

Conditions on Distributions:
There exists a family of densities P � C([0; 1]d);
1. for each p 2 P , !1(p; r) � kr and
2. there exists � > 0 such that for each p 2 P , p(x) > �.

Sample Size:

22m+4

�21

2
4
0
@k2m
�1

2
4 k2m

�1
� 1

!N�1
+ 1

3
5+m

1
A

ln
�
2m+1k=�1

�
+ ln

0
@ 22m+6

(� � �)�41

1
A
3
5

where �1 = �(�� �)=4, 0 < � < N
2(N+1), m = d logn�N e and � = b

�
2
�

�1=N+1�1=2�
+

b
�

2
�1

�1=N+1�1=2�
.

Performance: P
�
I(f̂m;n)� I(f �)j > �

�
< �
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Computational Complexity

Note: f̂m;n(y) can be computed in O(n) time

Preprocessing:
Organize the data into N -range tree:
time complexity O(n(logn)N�1)
for each J store sum and number of points;

Computation of estimator value at x:
sum and number of points in J containing x can be retrieved in O((logn)N)
time.

f̂m:n(y) can be computed in O((logn)N) time.

Note:
N -range tree is well-known in computational geometry and information re-
trieval.
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Fusion of Noisy Function Estimators

System of 5 function estimators
g(X), X 2 [0; 1]d: Unknown function
Realized by a feedforward neural network

Estimator i: for i = 1; 2; : : : ; 5

gi(X) = g(X)(1=2 + iZ=10)

Z: uniformly distributed over [�1;+1]

Fusion Function: f : [0; 1]5 7! [0; 1]
f(g1(X); � � � ; g5(X)) must approximate g(X)

Question:
Can a better predictor be obtained by \fusing" the noisy ones ?
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Simulation Results
Fusion of Noisy Function Estimators

Mean square error:

Training Set Testing Set Nadaraya-Watson Nearest Neighbor Neural Network

100 10 0.000902 0.002430 0.048654

1000 100 0.001955 0.003538 0.049281

10000 1000 0.001948 0.003743 0.050942

(a) d = 3

Training Set Testing Set Nadaraya-Watson Nearest Neighbor Neural Network

100 10 0.004421 0.014400 0.018042

1000 100 0.002944 0.003737 0.021447

10000 1000 0.001949 0.003490 0.023953

(b) d = 5
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Detection Problem: Parallel Sensor Suite

u
1

u
2

u
N

Fuser

.   .    .

Detector N

Detector 2

Detector 11

2

N

Z

Z

Z

(1)
= Y

= Y
(2)

= Y
(N)

Measured
features

Detector System: D1; D2; : : : ; DN

Detector: Di

Makes a decision ui 2 fH0; H1g

Fusion Center:
Receives u = (u1; u2; : : : ; uN) outputs either H0 or H1

Notes:
1. Well-studied problem in di�erent domains:

democracy models (Condorcet 1786)
composite methods (Laplace 1818)
reliability (von Neumann 1956)
pattern recongition (Chow 1965)

Newer applications are being found in diverse areas
2. Of particular importance to distributed sensor systems

Extensively studied over the past decade
Dasarathy (1994), Varshney (1996), Rao et al (1996)
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Examples

1. Intruder Detection System:
Detectors monitor workspace from di�erent vantage points
Each detector is equipped with sensors, algorithms
H0: intruder is present; H1: intruder is not present
Di: ui is generated probabilistically; Pi(ujH0), Pi(ujH1)
Question: Can individual results be combined to obtain more reliable
decision ?

2. DNA Analysis System: (Uberbacher and Mural 1991)
Each detector is a software program that examines a segment of human
DNA sequence
H0: Segment is protein-coding region; H1: otherwise
Question: Can di�erent programs be combined to obtain improved per-
formance ?

Note:
In the examples, systems are available
| data can be collected.

Example Fusion Rule: (Hashlamoun and Varshney, 1993)
Average-cost criterion is optimized by the likelihood ratio test

T (u) =
P (ujH1)

P (ujH0)
>
�0(C10 � C00)

�1(C01 � C11)
(T:1)

where
Ckj: cost of deciding Hk when Hj is true, k; j = 0; 1
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Motivation

In our formulation:
(i) Probability distributions are NOT known, and
(ii) Detector system is available, hence experimental samples can be collected.

Note:
1. Number of robotic applications belong to this formulation
2. Cost of obtaining probability distributions can be traded for some loss of
performance

Existing results:
For many formulations of problem, fusion rules have been derived under the
complete knowledge of the distributions

Our Results:
The fusion rules designed under known distributions can be implemented
when only a sample is available.
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Empirical Implementation

Fusion rules : expressed in terms of
(i) probabilities p = (p1; p2; : : : ; pn)
(ii) data u = (u1; u2; : : : ; uN)
of the form

R(p; u) > 0; (T:2)

where

decision is

8<
: H1 if the inequality is true
H0 otherwise:

If probabilities are known:
R(p; u) for given u can be explicitly evaluated.

In our formualtion:
1. Estimators p̂i are computer based on iid sample

(u1; H1); (u2; H2); : : : ; (ul; H l)
2. Empirical version given by

R(p̂; u) > 0

is employed

Question: How good is R(p̂; u) compared to R(p; u) ?
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Performance Criteria

Performance Measure: Expected error of R(p̂; u),

Eu[j�[R(p; u)]��[R(p̂; u)]j] = X
u
j�[R(p; u)]��[R(p̂; u)]jP (u);

where �[x] is 1 if x is non-negative and 0 otherwise.

Performance Criterion:
R(p̂; u) implements R(p; u) with con�dence 1� � if

P [�[R(p; u)] 6= �[R(p̂; u)]] < �

or equivalently
Eu[j�[R(p; u)]��[R(p̂; u)]j] < �

for su�ciently (but �nite) large sample of size l <1.

Informally,
based on a su�ciently large sample, R(p; u) and R(p̂; u) yield the same result
with a probability of at least 1� �.
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Independent Hypotheses

Formulation of Chair and Varshney (1986):
(i) independent detectors, (ii) a priori distributions are known
Fusion rule is of the form, for n � 1

nY
i=1

qi �
nY
i=1

si > 0 (T:3:1)

where qi and si are the probabilities of suitable events Qi and Si.

Empirical implementation of (T.3.1):

nY
i=1

q̂i �
nY
i=1

ŝi > 0

where q̂i and ŝi are empirical estimates of qi and si respectively based on the
l-sample.

Theorem 3.1:
For any r > 2, consider a sample of size

l =

2
666
1

2�2L
ln(2=�)

3
777

where �L =

0
BB@1 +

j
nQ
i=1

q̂i�
nQ
i=1

ŝij
r+2

1
CCA
1=n

� 1: Empirical implementation of
nQ
i=1

qi �
nQ
i=1

si > 0 has con�dence

1=22n � �(1� 1=22n)

or
1� 2n�
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Neyman-Pearson Test

Thomopoulos et al. (1989): a prori probabilities not known
Fusion rule is Neyman-Pearson test in the form

nY
i=1

qi � �
nY
i=1

si > 0 (T:3:2)

where the positive real � is �xed by the type I and II errors.

Corollary 3.1:
Consider a sample of size

l =

2
666
1

2�2L
ln(2=�)

3
777

where �L =

0
BB@1 +

j
nQ
i=1

q̂i��
nQ
i=1

ŝij
1+�

1
CCA
1=n

� 1: Empirical implementation of
nQ
i=1

qi �

�
nQ
i=1

si > 0 has con�dence con�dence

1� 2n�

or
1=22n � �(1� 1=22n)
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Lipschitz Test

R(p; u) is Lipschitz with respect to p:
there exists a positive constant L such that

jR(p+�p; u)�R(p; u)j < Ljj�pjj
for all �p, u, where jj�pjj denotes the Euclidean norm of �p in <n.

Note:
1. R(p; u) must be continuous in p
2. L is \upperbounded" by maximum gradient magnitude wrt p

Current Fusion Rules:
1. Large majority of published fusion rules are Lipschitz
2. There are several examples of non-Lipschitz tests

some of these tests can be approximated by Lipschitz tests
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Sample Size for Lipschitz Test

Theorem 3.2
Consider a decision rule R(p; u) with Lipschitz constant L.
For any r � 2, given a training sample of size

l =

2
666

r2nL2

2(R(p̂; u))2
ln(2=�)

3
777

R(p̂; u) > 0 implements the test R(p; u) > 0 with con�dence

1� n�

or
1=2n � �(1� 1=2n)
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Proof Outline: Theorem 3.2

1. Conditions sup
i
jpi � p̂ij < � and jR(p)j � L

p
n�, ensure that R(p; u) > 0

and R(p̂; u) > 0 yield the same result.

2. For � = jR(p;u)j
L
p
n , given a sample of size

l =
&
1

2�2
ln(2n=�)

'
(3:2:1)

R(p̂; u) implements R(p; u) with the required precision.

3. Lower bound for � by noting that 2jR(p; u)j � jR(p̂; u)j which implies
jR(p; u)j � 1

r
jR(p̂; u)j for any r � 2.

4. The sample size is obtained by using the lower bound jR(p̂;u)j
rL
p
n for �.

Note:
Tighter sample bounds may be possible in particular cases,
e.g. Theorem 3.1
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Neyman-Pearson Test

Particular form of the test, for a positive real � ,

P (ujH1)� �P (ujH0) > 0 (T:3:4)

Let P̂ (A) be fraction of times event A took place in the sample.

(i) Given a training sample of size

l =

2
666

4(1 + �)2

[P̂ (ujH1)� �P̂ (ujH0)]2
ln(4=�)

3
777

the empirical rule P̂ (ujH1)��P̂ (ujH0) > 0 implements the test P (ujH1)�
�P (ujH0) > 0 with con�dence 1� �.

(ii) Given a training sample of size

l =

2
666

72(1 + �)2

[P̂ (u \H1)P̂ (H0)� �P̂ (u \H0)P̂ (H1)]2
ln(8=�)

3
777

the empirical test P̂ (u\H1)P̂ (H0)� �P̂ (u\H0)P̂ (H1) > 0 implements
the test P (ujH1)� �P (ujH0) > 0 with con�dence 1� �.
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Correlation Coe�cients Method:

Drakopoulos and Lee (1991):
Method of correlation coe�cients

C = fP [ui1:::uikjHj ]jfi1; : : : ; ikg � f1; : : : ; Ng; j = 0; 1g :
The fusion test is given by

P (ujH1)� �P (ujH0) > 0 (T:3:5)

for suitable � such that for j = 0; 1

P (ujHj) =
X
I�A0

(�1)jI jP
2
4 Y
i2A1[I

uijHj

3
5

where Ak = fi : ui = kg and I, of cardinality jIj, varies over all subsets of
A0.

Corollary 3.3:
Given a training sample of size

l =

2
666

r223N�1(1 + �)2

[P̂ (ujH1)� �P̂ (ujH0)]2
ln(2=�))

3
777

the empirical rule implements P (ujH1) � �P (ujH0) > � with con�dence
1=2N � �(1� 1=2N).
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Simulation Results: Decision Fusion

Fuser

.   .    .

Detector N

Detector 2

Detector 1

x

y

y

y

(1)

(2)

f(y)

(N)

Five detectors Di, i = 1; 2; : : :5
Input: Boolean with equal probability

Detector Di:
output is input with prob. 1� i=10;

opposite with prob. i=10;
Detectors are statistically independent.
�0 = �1 = 1=2
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Simulation Results: Decision Fusion

Sensor Probability of

Correct Classi�cation

S1 90.0%

S2 80.0%

S3 70.0%

S4 60.0%

S5 50.0%

Note:
1. Best classi�er:

correct classi�cation probability - 90%
2. Bayesian fuser:

empirical performance - 91%
3. Both nearest neighbor and empirical fuser also achieve 91% correct classi-
�cation.
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Decision Fusion (Cntd.)

Percentage of correct classi�cation:

Sample Size Test set size Bayesian Fuser Empirical Decision Nearest Neighbor Nadaraya-Watson

100 100 91.91 23.00 82.83 88.00

1000 1000 91.99 82.58 90.39 89.40
10000 10000 91.11 90.15 90.81 91.42

50000 50000 91.19 90.99 91.13 91.14

Bayesian Fuser: Uses probability distribution
(Chair and Varshney 1986)

Empirical Decision
Nearest Neighbor
Nadaraya�Watson

9>>>=
>>>; Use only the sample
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% of
correct

classification

% of
correct

classification

% of
correct

classification

1 2 3 4 5 6 7 8 9 10

0.5

0.0

1.0

(a)

sample size
(100/unit)

Bayesian fuser

Empirical fuser

1,000 sample

1 2 3 4 5 6 7 8 9 10
0.8

0.9

1.0

(b)

sample size

Bayesian fuser

Empirical fuser

1 2 3 4 5 6 7 8 9 10

0.920

0.900

0.910

(c)

Bayesian fuser

Empirical fuser
sample size

10,000 sample

100,000 sample

(1,000/unit)

(10,000/unit)

Figure 1: Relative performance of the Bayesian fuser and empirical fuser with training.
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Decision Fusion (Cntd.)

Percentage of misclassi�cation:

Sample Size Test set size S1 S2 S3 S4 S5 Nadaraya-Watson

100 100 7.0 20.0 33.0 35.0 55.0 12.0

1000 1000 11.3 18.5 29.8 38.7 51.6 10.6

10000 10000 9.56 20.19 30.38 39.82 49.68 8.58

50000 50000 10.038 20.136 29.854 39.904 50.050 8.860

Note:

The fuser performs better than the best estimator S1 after 1000 examples.
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Presentation Outline

1. Generic Sensor Fusion Problem

1.1 Formulation and Examples

1.2 Finite Sample Solutions

1.3 Performance Issues

1.4 Applications

2. Detection/Classi�cation Problems

2.1 Distributed Detection Problem

2.2 Sample-Based Solutions

3. Is Fusion Easier ?

3.1 Isolation Fusers

3.2 Projective Fusers

4. Metafusers

4.1 Fusion of Fusers

4.2 Practical Paradigm

5. Performance Issues

5.1 Finite Sample Guarantees

5.2 Computational Issues

5.3 Practical Problems
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Multiple Sensor System

Sensor System: S1; S2; : : : ; SN

Sensor: Si
Y (i) 2 [0; 1]: output of Si for input X 2 [0; 1]:

generated according to probability distribution PY (i)jX

Sensor Distributions: Pi(:)'s are unknown.

Fusion Rule:
Given sensor outputs (Y (1); Y (2); : : : ; Y (N))
Compute input X

Fusion Function: Special case: f : [0; 1]N 7! [0; 1]
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Performance of Sensor

Expected error of sensor Si

IS(Si) =
Z
[X � Y (i)]2dPY (i);X ;

where PY (i)jX is the distribution of Si.

Best Sensor:

Si� = arg
N
min
i=1

IS(Si)

Note:
1. If the distributions are known,

best sensor can be obtained in principle

2. Here distributions are unknown, but a sample is known

59



Performance of Fuser

Expected error of fusion function f

I(f) =
Z
[X � f(Y )]2dPY;X ;

where PY jX is the joint distribution of S1; : : : ; SN

Best Fuser:
From a family of functions F

f � = argmin
f2F

I(f)

Example:
F : Set of all sigmoid neural networks

Note:
1. If the distributions are known,

best fuser can be obtained in principle
2. Here distributions are unknown, but a sample is known
3. Known distributions can be incorporated by adjusting the cost.
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Fuser Versus Best Sensor

Question 1: If distributions are known,
are we better o� choosing one of the sensors ?

Answer : IS(Si�) < IF (f
�)?

Question 2: If only a sample is known,
are we better o� by choosing one of the sensors ?

Short Answer:
If F : (a) satis�es isolation property,

(b) \small" cover-size,
then, with high probability fuser is better.

Informally,
(a) fuser should be able to pick best sensor as a minimum, and
(b) must do it e�ciently.

61



Isolation Property

F = ff : [0; � ]k 7! [0; � ]g has the isolation property if it contains the func-
tions

f i(y1; y2; : : : ; yk) = yi

for all i = 1; 2; : : : ; k.

Important Property:

IF (f
�) =

N
min
i=1

IS(Si)��

for some � 2 [0;1).

Note:
(1) precise value of � depends on F ,
(2) isolation property guarantees that

IF (f
�) � N

min
i=1

IS(Si)

as a minimum.
Informally, f � is at least as good as best sensor.

Examples:
1. Linear combinations have isolation property
2. Sigmoid feedforward networks do not have isolation property
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Covering Numbers

Set S be equipped with a pseuodometric �.

Covering Number: NC(�; �; S) under metric �:
smallest number of closed balls of radius �, and centers in S, whose union
covers S.

Function Classes: G = fg : <M 7! [0; 1]g
We consider two metrics: for g1; g2 2 G we have

dP (g1; g2) =
Z
z2<M jg1(z)� g2(z)jdP;

for the probability distribution P de�ned on <M , and
d1(g1; g2) = sup

z2<M
jg1(z)� g2(z)j:

Note:
Alternate characterizations exist for approximation properties of F .
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Main Result:

If F has the isolation property, we have

IF (f
�) =

N
min
i=1

IS(Si)��;

for � 2 [0;1), and

P l
Y;X

"
IF (f̂)�

N
min
i=1

IS(Si) + � > �

#
< �

given the sample size l of at least

2048

�2
[lnNC(�=64;F) + ln(4=�)]

for cases:
(i) NC(�;F) = NC(�; d1;F), and
(ii) NC(�;F) = NC(�; dP ;F) for all distributions P .
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Linear Combination Fusers

� Linear combinations satisfy isolation property.

� One of the widely-used fuser methods, for fusing classi�ers,
regression estimators, and neural networks.

Simple Sample Size:

2048

�2

"
N ln

 
128e

�
ln
128e

�

!
+ ln(8=�)

#
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Classi�cation Problem

Special Case: Each Si is a target detector or classi�er:
X 2 f0; 1g, Y (i) 2 f0; 1g, and

IS(Si) =
Z
[X � Y (i)]dPY (i);X

corresponds to the probability of misclassi�cation of Si

Finite Cover Size: jFj � 22
N

,
since F at most consists of all Boolean functions on N variables
| NC(�;F) � jFj for all � > 0.
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Feedforward Networks

Single hidden layer of h nodes and a single output node.
Output for input y 2 [0; 1]d is given by

fw(y) =
hX
j=1

aj�(b
T
j y + tj)

where w = (w1; w2; : : : ; wh(d+2)) is the weight vector consisting of
a1, a2, : : :, ah,
b11; b12; : : : ; b1d; : : : ; bh1; : : : ; bhd, and
t1; t2; : : : ; th, and �(z) is given by

�� (z) =

8>>><
>>>:
z if z 2 [0; � ]
� if z > �
0 if z < 0

for some bounded � > 1.

Function Class:

FLB = ffw /T18 1 Tf
114.99CQ80.(z)Tj
/T15 1 Tf
93.0002 00 TD
(d)[8 1 Tf
114.99CQ32D
(if)Tj
/T/
/T22 1 Tf
112 0
107.9998 0 6 1 Tf
B;



Potential Functions

f 2 F is of the form
w1�1(x) + : : :+ ws�s(x);

for wi 2 <, x 2 <d, �i : <d 7! <, corresponding to the basis f�1; : : : ; �sg.

Computation of Estimator:
f̂i corresponds to the weight vector (w1; : : : ; ws) that minimizes the empirical
error.

Sample Size:
Fi forms a vector space of dimensionality s:

2048

�2

"
s ln

 
128e

�
ln
128e

�

!
+ ln(8=�)

#

Note:
1. general potential functions do not satisfy the isolation property,
2. piecewise linear version of �i's satisfy isolation property,
3. computation of f̂ is polynomial-time
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Asymptotic Results

In statistics literature,
asymptotic consistency results are more common.

Consistency:

The estimate f̂ is consistent if

IF (f̂)! IF (f
�)

with probability one as l!1.

Under �niteness of NC(�;F), consistency result follows from Borel-Cantelli
Lemma if 1X

l=1

4NC(�=64;F)e�l�2=2048 <1

for every � > 0.

This condition is true since
1X
l=1

e�l�
2=2048 � 2048

�2
e��

2=2048

which is �nite for all � > 0.
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Class of Projective Fusers

Projective Fuser: fP
| corresponds to a partition P = f�1; �2; : : : ; �kg, k � N , of input space <d
| assigns each block �i to a sensor Sj such that

fP (Y ) = Y (j)

for all X 2 �i i.e. fuser simply transfers output of Sj for every point in �i.

Y

Y

(1)

(2)

X

project S 2

project S 1

 desired feature X 

Optimal Projective Fuser: fP �:
| minimizes I(:) over all partitions of <d, and
| assignments of blocks to sensors S1; S2; : : : SN .
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Projective Fuser Based on Error Regressions

Error Regression of Si and fF :

E(X;Si) =
Z
C(X; Y (i))dPY jX

E(X; fP ) =
Z
C(X; fP (Y ))dPY jX

Projective Fuser Using Error Regressions:

fLE(Y ) = Y (iLE(X))

where
iLE(X) = arg min

i=1;2;:::;N
E(X;Si)
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Projective Fuser Based on Error Regressions

Property:
Error regression of fLE is lower envelope of the set of error regressions of
sensors given by fE(X;S1); : : : ; E(X;SN)g.

E(X; fLE) = min
i=1;:::;N

E(X;Si)

Y

Y

(1)

(2)

X

error regression of S

error regression of S 1

2

project S1
project S 2

 desired feature X 
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Example 1

X : uniformly distributed over [0; 1] { measured by two sensors S1 and S2:

Y (1) = X + jX � 1=2j+ U

Y (2) = X + 1=[4(1 + jX � 1=2j)] + U

where U is an independent random variable with zero mean

For C(X; Y (i)) = (X � Y (i))2, error regressions are given by

E(X;S1) = (X � 1=2)2 + E[U2]

E(X;S2) = 1=[16(1 + jX � 1=2j)2] + E[U2]

Comparison between sensors:

I(S1) = 0:0833 +E[U2] and I(S2) = 0:125 +E[U2];

{ S1 is the better of the two sensors.
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Example 1 (Cntd.)

Projective Fuser fLE:
Corresponds to lower envelope of E(X;S1) and E(X;S2).

range for X sensor to be projected

[0; 0:134] S2

[0:134; 0:866] S1

[0:866; 1] S2

I(fLE) = 0:0828 + E[U2]
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Classi�cation Example

X 2 [0; 1]� f0; 1g is speci�ed by a function fX = 1[1=4;3=4]
X is generated as follows: X = (Z; fX(Z))

1. Z is uniform in [0; 1] | �rst component
2. fX(Z) forms the second component

Detection Problem:
Z: Use sensor to measure a feature
fX : Function used by classi�cation algorithm

Second component of X:
| presence (fX(Z) = 1) or absence (fX(Z) = 0) of target
| represented by a feature Z taking a value in the interval [1=4; 3=4]

Sensor System:
1. device to measure the �rst component Z of X
2. algorithm to compute the second component.

Sensor  System

measuring
device

decision
algorithm

Z
f    (Z)
X
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Classi�cation Example - Cntd.

Sensor system:
S1 and S2 have:

| ideal devices to measure Z without an error
| make errors in utilizing the measured features

Y (1) = (Z; 1[1=4��1;3=4](Z))

Y (2) = (Z; 1[1=4;3=4��2](Z))

for some 0 < �1; �2 < 1=4

For quadratic cost function C(X; Y (i)) = (X �Y (i))T (X �Y (i)), error regres-
sions:

E(X;S1) = 1[1=4��1;1=4](Z)

E(X;S2) = 1[3=4��2;3=4](Z)

I(fLE) = 0, where as both I(S1) and I(S2) are positive.
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Classi�cation Example - Cntd.

1/4 3/4

ε ε 21

f
X

Z

(1)Y

Y
(2)

projective fuser

second component  of

second component  of

optimal

(x,S )

(x,S  )

1

2

use  S   only use  S   only 2 1

ε

ε

Z

Z

Z

Z

Z
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Optimality Result

Theorem:
The projective fuser based on the lower envelope of error regressions is optimal

among all projective fusers.

Proof: Y : sensor output corresponding to X
For any projective fuser fP (Y ):

iP (X): index of the estimator such that fP (Y ) = Y (iP (X))

For X 2 <d, we have
E[C(X; fP(X))jX] = E(X; fP )

= E(X; Y (iP (X)))

� E(X; fLE)
= E[C(X � fLE(X))jX]:

By taking the expectations with respect to PX on both sides, we have

I(fLE) � I(fP )
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Linear Fusers

For sensor output Y = (Y (1); : : : ; Y (N)), linear fuser is de�ned as

fL(Y ) =
NX
i=1

�iY
(i)

for some (�1; : : : ; �N) 2 <N .

Optimal Linear Combination Fuser: fL�:
| minimizes I(:) over all linear combinations

Comparison with: fLE
1. If individual sensors perform well in localized regions,
| fLE is better
2. If the sensors are equally distributed around certain values in global sense,
| fL� performs better
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Better Projective Fuser

For classi�cation example, for fL = �1Y
(1) + �2Y

(N), we have

I(fL) = �2
1

Z
[1=4��1;1=4)

dPZ

+ (1� �1 � �2)
2

Z
[1=4;3=4��2)

dPZ

+ (1� �1)
2

Z
[3=4��2;3=4]

dPZ

which is non-zero no matter what the coe�cient are.

Projective Fuser:
Error regressions of S1 and S2 are non-zero in [1=4��1; 1=4] and [3=4��2; 3=4]
| intervals are disjoint:

error of one sensor being canceled by a scaler multiplier of the other.

In General:
{ If the error regressions of sensors take non-zero values on disjoint intervals,
then any linear fuser will have non-zero error.
{ Disjointness yields E(X; fLE) = 0, for all X, and hence I(fLE) = 0.
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Better Linear Fuser

In classi�cation example, let fX = 1 for Z 2 [0; 1],

Y (1)(X) = (Z; �Z + 1� �)

Y (2)(X) = (Z;��Z + 1 + �);

for 0 < � < 1.

Optimal linear fuser:

fL�(Y ) = 1=2(Y (1) + Y (2)) = 1

I(fL�) = 0

Optimal projective fuser: At every X 2 [0; 1], we have

E(X;S1) = E(X;S2) = �2(1� Z)2 = E(X; fLE):
Thus, I(fLE) = �2

R
[0;1]

(1� Z)2dPZ > 0, whereas I(fL�) = 0.

81



Sample-Based Projective Fusers

Consider that sensor distributions are not available
| utilize regression estimator Ê(X;Si) of E(X;Si)
| lower envelope of the estimators in the computation of fuser.

Estimator:
For a sequence fhlg of positive numbers, consider the partition of < given by

�l = f[(r � 1)hl; rhl)jr 2 Zg:
Let  l[X] denote the unique cell of �l that contains X. Then, the estimator
of E(X;Si) is given by

Ê(X;Si) =
lP

j=1
C(Xj; Y

(i)
j )1 l[X ](Xj)

nP
j=1

1 l[X ](Xj)
:

Consider the conditions:
(i) C(X; Y ) < K for some K > 0;
(ii) lim

l!1hl ! 0; and

(iii) nhl !1 as l!1.

Known Result:R jE(X;Si) � Ê(X;Si)j2dPX ! 0 with probability 1 regardless of the distri-
butions of sensors.
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Consistency of Projective Fusers

Sample-Based Fuser:
The fuser f̂LE is as previously de�ned with Ê(X;Si) used in place of E(X;Si).

Consistency:
I(f̂LE)! I(fLE) as l!1 with probability 1 for any sensor distributions.

Consistency Proof:
Since f̂LE is a projective fuser, we have I(f̂LE) � I(fLE). By de�nition
Ê(X; f̂LE) � Ê(X; fLE). Then,

I(f̂LE)� I(fLE)

�
Z
[E(X; f̂LE)� E(X; fLE)]dPX

�
Z
[E(X; f̂LE)� Ê(X; f̂LE)]dPX +

Z
[Ê(X; f̂LE)� E(X; fLE)]dPX

�
Z
jE(X; f̂LE)� Ê(X; f̂LE)jdPX +

Z
jÊ(X; fLE)� E(X; fLE)jdPX

� 2
NX
i=1

Z
jE(X;Si)� Ê(X;Si)jdPX :

Since
R jE(X;Si) � Ê(X;Si)jdPX ! 0, we have I(f̂LE) ! I(fLE) as l ! 1

with probability 1.
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Non-Optimality in Larger Fuser Class

Negative Result:
fLE may not be optimal in a larger class of fusers where some function of the
sensor output can be projected.

Classi�cation Example:
Consider fX = 1[1=4;3=4],

Y (1)(X) = (Z; 1[1=4��1;3=4��1](Z))

Y (2)(X) = (Z; 1[1=4;3=4��2](Z))

for some 0 < �1; �2 < 1=8, and �1 < �2. Thus, we have

E(X;S1) = 1[1=4��1;1=4](Z)

E(X;S2) = 1[3=4��2;3=4](Z)

whose lower envelope is not the zero function.

We have
E(X; fLE) = 1[3=4��2;3=4��1](Z)

I(fLE) =
Z

[3=4��2;3=4��1]
dPZ

By changing the assignment Y (1) of fLE to 1�Y (1) for Z 2 [3=4��2; 3=4��1],
we achieve zero error.
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Projective Fusers and Isolation Property

Projective fusers satisfy isolation property
| since gi corresponds to entire <d forming one block assigned to the single
sensor Si.

Implication of Isolation Property:
G = fg(Y )g has isolation property,
we have for all i = 1; 2; : : : ; k,

inf
g2G

Z
E(X; g(Y ))dPX �

Z
E(X; Y (i))dPX

which implies
inf
g2G

I(g) � min
i=1;:::;N

I(Si)

Optimal Projective Fuser As Good As Best Sensor:
Since I(fLE) � inf

g2G I(g)

| fLE performs at least as well as the best sensor.
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Is Fusion Easier ?

Yes:
If fuser is just required to peform as at least as good as the best sensor.

No:
If �nite sample guarantees are needed on the cost
{ situation is very similar to classi�cation:
Any fuser can perform poorly on bad distributions
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Metafusers

y(1)

y(2)

S

S

S

2

1

x

y

y(M)M
FUSER

FUSER

FUSER FUSER

Composite  Fuser

There  is  no  "best"  fuser

Motivation:
1. Pick \best estimator" or fuse all/some estimators?
| old formulation
2. Can di�erent fusers be fused ? | Yes, metafusers
| new formulation
| there is no single \best fuser"

Result: Informally,
if metafuser class G has isolation property
composite system is at least as e�cient as the best elemental fuser or esti-
mator
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Metafuser 1

Include the optimal linear combination as SN+1, we can guarantee that

I(fLE) � I(fL�)

by the isolation property of projective fusers

| linear combinations also satisfy the isolation property, we in turn have

I(fL�) � min
i=1;:::;N

I(Si)

f

f
L*

L*

f

f

Metafuser 1 Metafuser 2

estimaror N

estimator 1
estimator 1

estimaror NEC

EC
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Metafuser 2

The roles of fL� and fLE can be switched { by including fLE as one of the
components of fL� { to show that

I(fL�) � I(fLE) � min
i=1;:::;N

I(Si)

f

f
L*

L*

f

f

Metafuser 1 Metafuser 2

estimaror N

estimator 1
estimator 1

estimaror NEC

EC
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Simulation Results For Metafuser 1: Typical Results

Six neural network estimators for the target function

f2(x) = 0:02(12 + 3x� 3:5x2 + 7:2x3)

(1 + cos 4�x)(1 + 0:08 sin 3�x):

Parameters:
{ number of hidden nodes is randomly chosen
{ trained with backpropagation algorithm with a di�erent learning rate ran-
domly chosen
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Simulation Results For Metafuser 1: Fuser Results

Results: In terms of test error:
{ Linear fusers is 31.15 times better than best estimator
{ Projective fuser is 1.3 times better than linear fuser
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Simulation Results For Metafuser 1: Summary

For each dataset size, 10 di�erent samples are utilized

Results: In terms of test error:
Projective fuser outperformed both linear fuser and best estimator

data size projective other better performance (times) average

training test as good linear best linear best network error

Without noise

10 10 8 1 1 1.009269 10.489711 0.075042

25 25 8 2 0 1.039855 13.426878 0.021926

50 50 10 0 0 1.304039 31.157175 0.013454

75 75 10 0 0 1.530556 89.050201 0.004725

100 100 10 0 0 1.788104 87.905518 0.003764

With noise

10 10 8 2 0 0.982823 9.205843 0.041874

25 25 8 2 0 1.045973 14.115362 0.026983

50 50 10 0 0 1.293410 19.121033 0.010399

75 75 9 1 0 1.275850 33.192585 0.008435

100 100 10 0 0 1.227069 37.937778 0.007115
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A Practical Metafuser Paradigm

Include:
(i) Isolation fuser as one of the fusers
(ii) Metafuser with isolation property - linear combinations

New Sensor:
{ Insert the sensor
{ Retrain the isolation fuser and metafuser

Newfuser:
{ Insert the fuser
{ Retrain the metafuser

Result:
System performs at least as well as the best sensor and fuser at all times
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Finite Sample Guarantees

In most practical engineering systems:
Distributions:

(i) Either not known, or
(ii) Very expensive to estimate - expertise in multiple areas needed

Sample: Typically small
| Easier to obtain by experimentation
| More work is needed for providing practical guarantees
| Non-iid cases must to be considered

Computation: Computation of fuser must be e�cient

Finite sample guarantees is a neccessity
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A Perspective

Information Fusion arises in two avors:

A. Fusion is part of Problem Speci�cation:
System contains a number of information sources
| we need to combine the information

B. Fusion is Part of Solution:
Use multiple disparate solutions and combine

Fusion is Easier: if needs to be at least as good as best sensor
{ Classi�er needs to �x a class for �nite sample guarantees

even in theory we can do no better than "best-in-class"
{ Fuser can be chosen from a class with isolation property

Diverse Sensors and Fusers: must be developed
{ not su�cient to target a single method

97



Future Issues

Combination of Fusion and Tracking Methods:
| Both areas have seen signi�cant advances
They must be combined.

Domain Speci�c Knowledge:
{ must be exploited as much as possible

Newer Fusion Methods:
{ must continue to be developed
{ more diverse the better

Metafusers:
{ Are isolation metafusers su�cient ?
{ Trade-o�s in fusion layers
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Evaluation of Fusion Methods

Empirical Evaluation Methods:
{ Systematic methods are needed: Theory and practice

Benchmarks:
{ must be developed for each application class
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Closing

Exciting Times for Sensor Fusion:
| several analytical advances
| novel and challenging applications
| very encouraging pratical results

It is only the beginning:
{ Challenges in building practical working systems
{ Developing sound and illuminating theories
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