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Receives u = (u1; u2; : : : ; uN) outputs either H0 or H1

Notes:

1. Well-studied problem in di�erent domains:
democracy models (Condorcet 1786)
composite methods (Laplace 1818)
reliability (von Neumann 1956)
pattern recongition (Chow 1965)

Newer applications are being found in diverse areas
2. Of particular importance to distributed detection systems

Extensively studied over the past decade
Dasarathy (1994), Varshney (1996)
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Data-Based Formulation

In our formulation:

(i) Probability distributions are NOT all known and/or validated,
(ii) Detector system is available, hence experimental samples can be collected,
and
(iii) Known and validated distributions can be incorprated to better the guar-
antees.

Existing results:

For many formulations of problem, fusion rules have been derived under the
complete knowledge of the distributions

Our Results:

The fusion rules designed under known distributions can be implemented
when only a sample is available.
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Empirical Implementation

Fusion rules : expressed in terms of
(i) probabilities p = (p1; p2; : : : ; pn)
(ii) data u = (u1; u2; : : : ; uN)
of the form

R(p; u) > 0; (T:2)

where

decision is

8<
: H1 if the inequality is true
H0 otherwise:

If probabilities are known:

R(p; u) for given u can be explicitly evaluated.

In our formualtion:

1. Estimators p̂i are computer based on iid sample
(u1; H1); (u2; H2); : : : ; (ul; H l)

2. Empirical version given by

R(p̂; u) > 0

is employed

Question: How good is R(p̂; u) compared to R(p; u) ?
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Performance Criteria

Performance Measure: Expected error of R(p̂; u),

Eu[j�[R(p; u)]��[R(p̂; u)]j] = X
u
j�[R(p; u)]��[R(p̂; u)]jP (u);

where �[x] is 1 if x is non-negative and 0 otherwise.

Performance Criterion:

R(p̂; u) implements R(p; u) with con�dence 1� � if

P [�[R(p; u)] 6= �[R(p̂; u)]] < �

or equivalently
Eu[j�[R(p; u)]��[R(p̂; u)]j] < �

for suÆciently (but �nite) large sample of size l <1.

Informally,

based on a suÆciently large sample, R(p; u) and R(p̂; u) yield the same result
with a probability of at least 1� �.
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Independent Hypotheses

Formulation of Chair and Varshney (1986):
(i) independent detectors, (ii) a priori distributions are known
Fusion rule is of the form, for n � 1

nY
i=1

qi �
nY
i=1

si > 0 (T:3:1)

where qi and si are the probabilities of suitable events Qi and Si.

Empirical implementation of (T.3.1):

nY
i=1

q̂i �
nY
i=1

ŝi > 0

where q̂i and ŝi are empirical estimates of qi and si respectively based on the
l-sample.

Theorem 3.1: Rao (1997)
For any r > 2, consider a sample of size

l =

2
666
1

2�2L
ln(2=Æ)

3
777

where �L =

0
BB@1 +

j
nQ
i=1

q̂i�
nQ
i=1

ŝij
r+2

1
CCA
1=n

� 1: Empirical implementation of
nQ
i=1

qi �
nQ
i=1

si > 0 has con�dence

1=22n � Æ(1� 1=22n)

or
1� 2nÆ
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Neyman-Pearson Test

Thomopoulos et al. (1989): a prori probabilities not known
Under statistical independence, fusion rule is Neyman-Pearson test in the
form

nY
i=1

qi � �
nY
i=1

si > 0 (T:3:2)

where the positive real � is �xed by the type I and II errors.

Corollary 3.1: Rao (1997)
Consider a sample of size

l =

2
666
1

2�2L
ln(2=Æ)

3
777

where �L =

0
BB@1 +

j
nQ
i=1

q̂i��
nQ

i=1

ŝij
1+�

1
CCA
1=n

� 1: Empirical implementation of
nQ
i=1

qi �

�
nQ
i=1

si > 0 has con�dence con�dence

1� 2nÆ

or
1=22n � Æ(1� 1=22n)
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Neyman-Pearson Test

Particular form of the test, for a positive real � ,

P (ujH1)� �P (ujH0) > 0 (T:3:4)

Let P̂ (A) be fraction of times event A took place in the sample.

(i) Given a training sample of size

l =

2
666

4(1 + �)2

[P̂ (ujH1)� �P̂ (ujH0)]2
ln(4=�)

3
777

the empirical rule P̂ (ujH1)��P̂ (ujH0) > 0 implements the test P (ujH1)�
�P (ujH0) > 0 with con�dence 1� �.

(ii) Given a training sample of size

l =

2
666

72(1 + �)2

[P̂ (u \H1)P̂ (H0)� �P̂ (u \H0)P̂ (H1)]2
ln(8=�)

3
777

the empirical test P̂ (u\H1)P̂ (H0)� �P̂ (u\H0)P̂ (H1) > 0 implements
the test P (ujH1)� �P (ujH0) > 0 with con�dence 1� �.
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Correlation CoeÆcients Method:

Drakopoulos and Lee (1991):
Method of correlation coeÆcients

C = fP [ui1:::uikjHj ]jfi1; : : : ; ikg � f1; : : : ; Ng; j = 0; 1g :
The fusion test is given by

P (ujH1)� �P (ujH0) > 0 (T:3:5)

for suitable � such that for j = 0; 1

P (ujHj) =
X
I�A0

(�1)jI jP
2
4 Y
i2A1[I

uijHj

3
5

where Ak = fi : ui = kg and I, of cardinality jIj, varies over all subsets of
A0.

Corollary 3.3: Rao (1997)
Given a training sample of size

l =

2
666

r223N�1(1 + �)2

[P̂ (ujH1)� �P̂ (ujH0)]2
ln(2=Æ))

3
777

the empirical rule implements P (ujH1) � �P (ujH0) > � with con�dence
1=2N � Æ(1� 1=2N).
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Lipschitz Test

R(p; u) is Lipschitz with respect to p:
there exists a positive constant L such that

jR(p+�p; u)�R(p; u)j < Ljj�pjj
for all �p, u, where jj�pjj denotes the Euclidean norm of �p in <n.

Note:

1. R(p; u) must be continuous in p
2. L is \upperbounded" by maximum gradient magnitude wrt p

Current Fusion Rules:

1. Large majority of published fusion rules are Lipschitz
2. There are several examples of non-Lipschitz tests

some of these tests can be approximated by Lipschitz tests
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Sample Size for Lipschitz Test

Theorem 3.2 Rao (1997)
Consider a decision rule R(p; u) with Lipschitz constant L.
For any r � 2, given a training sample of size

l =

2
666

r2nL2

2(R(p̂; u))2
ln(2=Æ)

3
777

R(p̂; u) > 0 implements the test R(p; u) > 0 with con�dence

1� nÆ

or
1=2n � Æ(1� 1=2n)

12



Proof Outline: Theorem 3.2

1. Conditions sup
i
jpi � p̂ij < � and jR(p)j � L

p
n�, ensure that R(p; u) > 0

and R(p̂; u) > 0 yield the same result.

2. For � = jR(p;u)j
L
p
n , given a sample of size

l =
&
1

2�2
ln(2n=Æ)

'
(3:2:1)

R(p̂; u) implements R(p; u) with the required precision.

3. Lower bound for � by noting that 2jR(p; u)j � jR(p̂; u)j which implies
jR(p; u)j � 1

r
jR(p̂; u)j for any r � 2.

4. The sample size is obtained by using the lower bound jR(p̂;u)j
rL
p
n for �.

Note:

Tighter sample bounds may be possible in particular cases,
e.g. Theorem 3.1
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Statistical Independence

Distributions:

X - distribution PX ; Y - distribution PY

X; Y - joint distributions PX;Y

PX;Y = PXPY

or equivalently
PX jY = PX and PY jX = PY

Densities:

X - density fX(:); Y - density fY (:)

fX;Y (:) = fX(:)fY (:)

Comments:

1. Independence implies joint probabilities are simple products
2. It was invented to derive closed-form solutions for joint distributions
3. Some physical variables can be shown to be statistically independent from
�rst principles

Challenge:

Given small sample of two random variables, can we decide if their distribu-
tions are independent ?
{ if PX and PY are known, it is easier to check independence with some
con�dence using hypothesis testing
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Independence Implies Zero Covariance

X; Y are statistical independent

Cov(X; Y ) = E[(X �E(X))(Y � E(Y )]

=
Z
x

Z
y
(x� E(x))(y �E(y))fX;Y (x; y)dxdy

=
Z
x

Z
y
(x� E(x))(y �E(y))fX(x)fY (y)dxdy

=
Z
x
(x� E(x))

Z
y
(y �E(y))fY (y)dyfX(x)dx

= 0
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Zero Covariance Does Not Imply Independence

PX uniform on [�1=2; 1=2]
PY uniform on f�1=2; 1=2g

if X 2 [�1=2; 0) then Y = �1=2
if X 2 [0; 1=2] then Y = 1=2

X and Y are not statistically independent since
For X 2 [�1=2; 0) we have

PY=�1=2jX = 1 and PY=1=2jX = 0
For X 2 [0; 1=2] we have

PY=�1=2jX = 0 and PY=1=2jX = 1

For X 2 [�1=2; 0) we have

PY=�1=2PX = 1=2 6= PY=�1=2jX

Covariance:

Cov(X; Y ) = E[(X �E(X))(Y � E(Y )]

=
Z
x

Z
y
(x� E(x))(y �E(y))fX;Y (x; y)dxdy

= 1=2
Z
x2[�1=2;0)

xdx� 1=2
Z
x2[0;1=2] xdx

= 0

Important Point:
One cannot conclude statistical independence based on covariance
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Simulation Results: Decision Fusion

Fuser

.   .    .

Detector N

Detector 2

Detector 1
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y

y

(1)

(2)

f(y)

(N)

Five detectors Di, i = 1; 2; : : :5
Input: Boolean with equal probability

Detector Di:

output is input with prob. 1� i=10;
opposite with prob. i=10;

Detectors are statistically independent.
�0 = �1 = 1=2
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Simulation Results: Decision Fusion

Sensor Probability of

Correct Classi�cation

S1 90.0%

S2 80.0%

S3 70.0%

S4 60.0%

S5 50.0%

Note:

1. Best classi�er:
correct classi�cation probability - 90%

2. Bayesian fuser:
empirical performance - 91%

3. Both nearest neighbor and empirical fuser also achieve 91% correct classi-
�cation.
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Decision Fusion (Cntd.)

Percentage of correct classi�cation:

Sample Size Test set size Bayesian Fuser Empirical Decision Nearest Neighbor Nadaraya-Watson

100 100 91.91 23.00 82.83 88.00

1000 1000 91.99 82.58 90.39 89.40

10000 10000 91.11 90.15 90.81 91.42

50000 50000 91.19 90.99 91.13 91.14

Bayesian Fuser: Uses probability distribution
(Chair and Varshney 1986)

Empirical Decision
Nearest Neighbor
Nadaraya�Watson

9>>>=
>>>; Use only the sample

Note: Best performance is achieved by methods that do not explicitly esti-
mate the probabilities.
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Decision Fusion (Cntd.)

Percentage of misclassi�cation:

Sample Size Test set size S1 S2 S3 S4 S5 Nadaraya-Watson

100 100 7.0 20.0 33.0 35.0 55.0 12.0

1000 1000 11.3 18.5 29.8 38.7 51.6 10.6

10000 10000 9.56 20.19 30.38 39.82 49.68 8.58

50000 50000 10.038 20.136 29.854 39.904 50.050 8.860

Note:

The fuser performs better than the best estimator S1 after 1000 examples.
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Conclusions

Summary:

1. Distributed decision fusion problem applicable to cases with unknown
error distributions

2. Several fusion rules designed for known distributions case are taken ad-
vantage of

3. Finite sample results are obtained (as opposed to asymptotic)

Open Issues:

1. Can we test for statistical independence based on data ?

2. How do we validate probability models ?

3. How do we combine detectors and trackers ?
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Figure 1: Relative performance of the Bayesian fuser and empirical fuser with training.
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